Einleitung In der letzten Sitzung wurden faktoranalytische Verfahren für Datenexploration behandelt. Die Ergebnisse der EFA sind datengesteuert: welche Items welchen Faktoren zugeordnet werden, wie viele Faktoren genutzt werden, wie stark der Zusammenhang zwischen Item und Faktor ist, das alles sind Dinge, die aus den Daten heraus entschieden werden. In dieser Sitzung betrachten wir das Vorgehen, wenn in der Faktorenanalyse von einem konkreten, theoretisch fundierten Modell ausgegangen wird und dieses anhand empirischer Daten geprüft werden soll.
Forscher:innen der Psychologie oder anderer Natur-, Sozial- und Geisteswissenschaften interessieren sich häufig dafür, wie sich Daten auf einige wenige entscheidende Faktoren herunterbrechen lassen, welche ein theoretisches Erklärungsmodell für die Variation in einem Datensatz liefern. Die Annahme ist hierbei, dass die beobachtbaren Messungen eine Linearkombination (also eine Summe) aus einem systematischen (wahren) und einem unsystematischen (Fehler-)Anteil bilden. Die dahinterliegenden Faktoren sind nicht messbare (latente) Variablen, auf welche, unter gewissen Annahmen, nur anhand der Kovariation zwischen den beobachtbaren Items geschlossen werden kann.