Einleitung In der Einführungssitzung hatten wir einfache Operationen in R, das Einlesen von Datensätzen, einfache Deskriptivstatistiken, die lineare Regression, den \(t\)-Test und einige Grundlagen der Inferenzstatistik wiederholt. Nun wollen wir mit etwas komplexeren, aber bereits bekannten, Methoden weitermachen und eine multiple Regression in R durchführen. Hierbei werden wir uns auch nochmal mit Ausreißern beschäftigen.
Bevor wir dazu die Daten einlesen, sollten wir als erstes die nötigen R-Pakete laden. R funktioniert wie eine Bibliothek, in der verschiedene Bücher (also Pakete) erst vorhanden (also installiert) sein müssen, bevor man sie dann für eine Zeit leihen (also aktivieren) kann.
Einleitung In dieser Sitzung wollen wir hierarchische Daten mit der Multi-Level-Regression (auch hierarchische Regression, Multi-Level-Modeling, Linear Mixed-Effects Modeling, Random Coefficient Regression vgl. bspw. Eid, Gollwitzer & Schmitt, 2017, Kapitel 20 und Pituch und Stevens (2016) Kapitel 13) analysieren. Diese Daten sind dahingehend speziell, dass es in ihnen Clusterungen von Datenpunkten gibt, die zueinander ähnlicher sind als zu den übrigen. Dies verletzt die Annahme der Unabhängigkeit in der typischen Regressionsanalyse, was zu erheblichen Fehlschlüssen führen kann.
Einleitung In der Einführungssitzung hatten wir etwas über das Einlesen von Datensätzen, einfache Deskriptivstatistiken und den \(t\)-Test gelernt und in diesem Rahmen einige Grundlagen der Statistik wiederholt. Nun wollen wir mit etwas komplexeren, aber bereits bekannten, Methoden weitermachen und eine multiple Regression in R durchführen. Hierbei werden wir auch die zu diesem Verfahren notwendigen Voraussetzungen prüfen sowie das Vorliegen von Ausreißern untersuchen.
Bevor wir dazu die Daten einlesen, sollten wir als erstes die nötigen R-Pakete laden.