Einleitung Die (deskriptive) Diskriminanzanalyse geht der entgegengesetzten Fragestellung der MANOVA auf den Grund. Mit ihr können wir (deskriptiv) untersuchen, ob Gruppenzugehörigkeiten durch die AVs der MANOVA vorhergesagt werden können (siehe bspw. Pituch und Stevens, 2016, Kapitel 10 sowie Eid, Gollwitzer & Schmitt, 2017, Kapitel 15.4). Wir wollen uns wieder das fiktive Datenbeispiel (Datensatz Therapy aus dem gleichnamigen .rda File Therapy.rda) ansehen, den wir bereits in der MANOVA-Sitzung untersucht haben. Sie können den Datensatz “Therapy.
Einleitung In dieser Sitzung wollen wir mehrere Variablen gleichzeitig hinsichtlich Gruppenunterschiede mit Hilfe der mutlivariaten Varianzanalyse (engl. Multivariate ANalysis Of VAriance, MANOVA, vgl. bspw. Eid, Gollwitzer & Schmitt, 2017, Kapitel 15, sowie Wiederholungskapitel zur ANOVA und Mittelwertsvergleichen Kapitel 10-14, insbesondere 13-14, und Pituch und Stevens, 2016, Kapitel 4-6) untersuchen. Die MANOVA hat vor allem dann Vorteile, wenn die abhängigen Variablen, die wir bzgl. Gruppenunterschieden verrechnen wollen, korreliert sind! Wir wollen uns ein fiktives Datenbeispiel (Datensatz Therapy aus dem gleichnamigen .
Sitzung 1: Schuldaten Wie verwenden erneut den Datensatz Schulleistungen.rda. Sie können den Datensatz “Schulleistungen.rda” hier herunterladen. Liegt der Datensatz bspw. auf dem Desktop, so müssen wir den Dateipfad dorthin legen und können dann den Datensatz laden (wir gehen hier davon aus, dass Ihr PC “Musterfrau” heißt)
load("C:/Users/Musterfrau/Desktop/Schulleistungen.rda") Genauso sind Sie in der Lage, den Datensatz direkt aus dem Internet zu laden. Hierzu brauchen Sie nur die URL und müssen R sagen, dass es sich bei dieser um eine URL handelt, indem Sie die Funktion url auf den Link anwenden.