Maximum Likelihood

Logistische Regression

Einleitung In dieser Sitzung wollen wir dichotome abhängige Variablen mit der logistischen Regression (vgl. bspw. Eid, Gollwitzer & Schmitt, 2017, Kapitel 22 und Pituch und Stevens, 2016, Kapitel 11) analysieren. Diese Daten sind dahingehend speziell, dass die abhängige Variable nur zwei Ausprägungen hat, welche in der Regel mit \(0\) und \(1\) kodiert werden. Dies führt zu verschiedenen Problemen in der linearen Regression, die wir gleich betrachten wollen. Wir wollen uns ein reales Datenbeispiel ansehen, in welchem die Wahrscheinlichkeit der Drogenabhängigkeit durch einen Depressionsscore und das Geschlecht vorhergesagt werden soll.

Logistische Regression

Einleitung In dieser Sitzung wollen wir dichotome abhängige Variablen mit der logistischen Regression (vgl. bspw. Eid, Gollwitzer & Schmitt, 2017, Kapitel 22 und Pituch und Stevens, 2016, Kapitel 11) analysieren. Diese Daten sind dahingehend speziell, dass die abhängige Variable nur zwei Ausprägungen hat, welche in der Regel mit \(0\) und \(1\) kodiert werden. Dies führt dazu, dass der Wertebereich der abhängigen Variable so gut wie gar nicht durch die Vorhersage innerhalb einer normalen Regressionsanalyse “getroffen” wird, die Residuen nicht länger unabhängig von der Ausprägung der abhängigen Variablen sind und auch die Normalverteilungsannahme der Residuen verletzt ist.