Bisher hatten wir mittels Regressionsanalysen lineare Beziehungen modelliert. In der Sitzung zur quadratischen und moderierte Regresssion kamen dann im Grunde quadratische Effekte mit hinzu. Wir können unser Wissen über Regressionen allerdings auch nutzen um nichtlineare Effekte zu modellieren. Wie das geht und was zu beachten ist, schauen wir uns im Folgenden an. Dazu laden wir zunächst altbekannte Pakete:
library(ggplot2) # Grafiken library(car) # Residuenplots library(MASS) # studres Einführung: Exponentielles Wachstum Ein sehr wichtiges Vorhersagemodell zu Zeiten der Corona-Pandemie oder in Anbetracht von starkem weltweitem Bevölkerungswachstum ist das exponentielle Wachstum.
Einleitung In der Einführungssitzung hatten wir etwas über das Einlesen von Datensätzen, einfache Deskriptivstatistiken und den \(t\)-Test gelernt und in diesem Rahmen einige Grundlagen der Statistik wiederholt. Nun wollen wir mit etwas komplexeren, aber bereits bekannten, Methoden weitermachen und eine multiple Regression in R durchführen. Hierbei werden wir auch die zu diesem Verfahren notwendigen Voraussetzungen prüfen sowie das Vorliegen von Ausreißern untersuchen.
Bevor wir dazu die Daten einlesen, sollten wir als erstes die nötigen R-Pakete laden.