Der Likelihood-Ratio-Test (\(\chi^2\)-Differenzentest) vergleicht die Likelihoods zweier Modelle und somit implizit eigentlich die Kovarianzmatrizen (und Mittelwerte). In Lehrbüchern steht häufig der \(\chi^2\)-Wert ist stichprobenabhängig und wächst mit der Stichprobengröße, was ebenfalls als Grund für die Fit-Indizes genannt wird. Das ist allerdings nur teilweise richtig, denn der \(\chi^2\)-Wert ist nur für Modelle stichprobenabhängig, in welchen die \(H_0\)-Hypothese nicht gilt. In einigen Lehrbüchern steht zudem die Formel für den \(\chi^2\)-Wert wie folgt: Wir definieren zunächst die sogenannte Fit-Funktion \(F_{ML}\) (diese wurde bereits in der Sitzung zur CFA erwähnt), welche die Differenz zwischen der Kovarianzmatrix der Daten sowie der modellimplizierten Kovarianzmatrix quantifiziert (für die Formeln siehe gerne auch bspw.